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Abstract

In this report we exhibit how tensor networks can be used to numerically investigate the fluctua-
tion properties in nonequilibrium systems. In particular, we focus on the systems whose degrees
of freedom grow exponentially with the system size, and in which the fluctuations of relevant
quantities are quantified by some remarkable relations, collectively known as fluctuation theorem.
Tensor-network approaches are applied to calculate the characteristic functions of fluctuations that
more detailed information can be extracted from.

We start by giving a brief introduction to the fluctuation theorem. Specifically, we present the
derivations of the Jarzynski equality in the framework of classical statistical mechanics, and of the
Gallavotti-Cohen fluctuation theorem for the Markovian stochastic dynamics. These two relations
represent the major advance in nonequilibrium physics in the last three decades.

Then, we introduce a tensor-network approach to calculate the statistics of work done on 1D
quantum lattice systems initially prepared in thermal equilibrium states. In this approach, the
dynamics is simulated with Time Evolving Block Decimation (TEBD), and the initial thermal
equilibrium state is prepared either directly with TEBD or with Minimally Entangled Typical
Thermal States (METTS), which generates a set of typical states representing the Gibbs canonical
ensemble. As an illustrative example, we apply this approach to the Ising chain in mixed transverse
and longitudinal fields. Under a prescribed protocol, the moment generating function for work
distribution can be calculated, from which the quantum Jarzynski equality and the generalized
quantum work relation involving a functional of an arbitrary observable are tested.

Finally, we apply tensor networks to counting statistics for the stochastic particle transport in
an out-of-equilibrium diffusive system. This system is composed of a one-dimensional channel in
contact with two particle reservoirs at the ends. Two tensor-network algorithms, namely, Density
Matrix Renormalization Group (DMRG) and TEBD, are respectively implemented. The cumulant
generating function for the current is numerically calculated and then compared with its analytical
solution. Excellent agreement is found, manifesting the validity of these approaches in such an

application. Moreover, the fluctuation theorem for the current is shown to hold.

Keywords: Nonequilibrium Physics, Fluctuation Theorem, Work Statistics, Counting Statistics,
Tensor-Network Approaches
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Chapter 1

Introduction

The last three decades have witnessed great advance in the field of nonequilibrium statistical
physics. In particular, the establishment of various relations, nowadays collectively called fluctu-
ation theorem, have revolutionized our understanding about the dichotomy between microscopic
reversibility and macroscopic irreversibility. It is now clear that the microscopic reversibility under-
pins these relations, whereas the macroscopic irreversibility is interpreted as an emerging property
from the statistical level of description. One of these relation is the Jarzynski equality which
attracts considerable interests. It is a parameter-free, model-independent relation, and allows to
express the free energy difference between two equilibrium states by a nonlinear average over the
required work to drive the system in a nonequilibrium process from one state to another. The
other notable relation is called Gallavotti-Cohen fluctuation theorem. It is a strikingly simple and
general relation which quantifies the large-deviation property of the fluctuating currents flowing
across systems maintained in nonequilibrium steady state, and has already been proved in many
systems. From this relation, the fluctuation-dissipation theorem, Onsager reciprocal relations and
their generalizations can be easily derived.

1.1 Motivation
1.2 Outline

The purpose of the present report is to show how tensor-network approaches can be used to
numerically calculate the statistics of relevant quantities in nonequilibrium systems. In fact, this
nowadays constitutes one of very active subfields of statistical physics. This report is organized as
follows.



Chapter 2

Fluctuation Theorem

Fluctuation theorem is one of the greatest triumphs in the search for general statements regarding
the dynamics of systems far from equilibrium. It represents a collection of relations in similar
structure, concerning the comparison between the probabilities of forward and time-reversed tra-
jectories. These relations are as a consequence of microreversibility, a fundamental symmetry of
Nature. They can be considered as a generalization of the second law of thermodynamics. Close
to equilibrium, the fluctuation theorem reduces to the fluctuation-dissipation relations such as the
Green-Kubo relation for the transport coefficient. Moreover, they also implies the Onsager recip-
rocal relations as well as the generalized nonlinear ones up to arbitrary order. In this chapter, we
give a very detailed analytical derivation of two most well-known relations, the Jarzynski equality
and the Gallavotti-Cohen fluctuation theorem.

2.1 Jarzynski Equality

In 1997, Jarzynski proved a remarkable relation,
<e_ﬂW> = e_BAF, (2.1)

where W is the work done on a system that is initially in thermal equilibrium and driven out of
equilibrium by an external force evolving under a protocol which is parameterized by A from the
value A to B. AF = Fp — F4 denotes the free energy difference between the final equilibrium
ensemble and the initial equilibrium ensemble, and (-) stands for the average over the repetition of
driving [1-5]. This relation was later called Jarzynski equality, allowing to express the free energy
difference between two equilibrium states by a nonlinear average over the required work to drive
the system in a nonequilibrium process from one state to the other. From the Jarzynski equality,
the Clausius inequality can be immediately obtained as a corollary, (W) > AF, thus in accord
with the second law of thermodynamics.

We now derive the Jarzynski equality in the framework of classical statistical physics. Let’s
consider a system described by the Hamiltonian H (x; A), where = (q, p) denotes the microstate
and A represents the external control parameter. When this system is equilibrated with a thermal
environment, its microstate can be viewed as a random variable sampled from the Boltzmann-Gibbs
distribution

. 1 are
P (z) = Z° BH (@A) (2.2)

The partition function and free energy are given by the familiar expressions:

7\ = /dx e PH, Fy=—-3"1InZ,. (2.3)
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Under a driven protocol A¢,0 < A < 7, after being prepared in equilibrium, the system evolves in
time as A is switched from A\g = A to A\; = B. Because the system is thermally isolated in this
process, the work done on the system is simply the net change in its internal energy

W(zo) = H(zr(x0); B) — H(x0; A). (2.4)

Here, z,(z() denotes the final coordinate in phase space, conditioned that the trajectory launched
from the initial coordinate zp. The left-hand side of Eq. (2.1) is then an average of exp[—SW (z0)]
over the initial conditions sampled from the equilibrium distribution (2.2) at A = A:

(e=PWy = /dxopzq(xo)e_ﬁw(%)

1 .
e 7ZA d‘TO e*ﬁH(iE.,—(mg),B)
1 or, | .
=5 [ doe ai:co e PH(@r:B), (2.5)

where we have changed the variables of integration from xg to x,(zg). Such a change of variable
is permitted since there is a one-to-one correspondence between final and initial coordinates under
Hamiltonian evolution. The additional factor in the last line is the Jacobian associated with the
change of variables. Since the volume of phase space is conversed by the Liouville theorem [6], this
factor is exactly unity. Hence

1 ) Z
<e*BW> = /dee*ﬁH(“’B) = Z—B = e AAF, (2.6)
A A

Q.E.D.

2.2 Gallavotti-Cohen Fluctuation Theorem
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Conclusion and Perspectives

The present report has been devoted to study of the nonequilibrium systems with tensor-network
approaches, with the focus on the fluctuation properties of relevant quantities. The characteristic
functions quantifying the fluctuations are numerically calculated.



Appendix A

Numerical Details and Code
Implementations

Computer programming is an art, because it applies accumulated knowledge to the world,
because it requires skill and ingenuity, and especially because it produces objects of beauty.
A programmer who subconsciously views himself as an artist will enjoy what he does and
will do it better.

— Donald E. Knuth

Computer programming plays an increasing important role in scientific research. It has de-facto
become a pillar in scientific research, to be complementary with theory and experiment. A scientist
might first build a model to describe a physical system according to the underlying physical laws,
then use a computer to calculate the results and visualize them. This is now a widely adopted
paradigm in scientific community. This appendix is devoted to the numerical details and code
implementations about the DMRG approach to counting statistics. The required software and
code written in C++ are presented in detail. Some explanatory remarks are also given.

Required Software

The

following listed software are those minimal requirements for the code presented in next section

to be compiled and executed correctly.

Ubuntu 22.04 — one of the most popular distribution of Linux operating system. Other
version might also be OK, but it is highly recommended to use the most recent one.

g++ — an open-source C++ compiler included in GCC (GNU Compiler Collection). It can
be installed on Ubuntu with the command sudo apt install g++.

GNU Make — a utility that facilitates compiling a program from source code. It reads from a
file named Makefile which includes a set of instructions to be executed. It can be installed
on Ubuntu with the command sudo apt install make. Readers are referred to Ref. [7] for
detailed account.

GSL (GNU Scientific Library) — an open-source library for C/C++ programmers. It is
licensed under the GNU General Public License (GPL). It can be installed on Ubuntu with the
command sudo apt install gsl-bin 1libgsl27 libgsl-dbg libgsl-dev. The reference
manual for this library is Ref. [8].

ITensor (Intelligent Tensor) — an open-source library for performing tensor computation. It
provides both C++ and Julia version, whereas the former is used here. The installation
instructions comes with the downloaded source code from here. Readers are referred to
Ref. [9] for more details.


https://releases.ubuntu.com/22.04/
https://gcc.gnu.org/
https://www.gnu.org/software/make/
https://www.gnu.org/software/gsl/
https://itensor.org/
https://github.com/ITensor/ITensor
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6 Appendix A. Numerical Details and Code Implementations

C++4 Code for DMRG Approach to Counting Statistics

In the following, we show the code, which are written in separate text files:

e Class_model.h.

Listing A.1: Class_model.h.

#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
#include <vector>
#include <itensor/all.h>

class Cmodel
{
public:

static itensor::Real m_D;
static itensor::Real m_Delta_x;
static int m_L;
static int m_N_L;
static int m_N_R;
static int m_Dim;
static itensor::IndexSet m_phys_indices;
static itensor::IndexSet m_mpo_bond_indices;
static std::vector<itensor::ITensor> m_mpo;

static void initialization(int, int, int, int);
static void parameterization(itensor::Real);
static itensor::Real A();

std::vector<itensor::ITensor> m_mps;
int m_center;

Cmodel (void);

Cmodel (const Cmodel &);

void print(std::string, int);

void canonication(int, int, itensor::Real);
itensor::Real Q(void);

itensor::Real P(int, int);

Cmodel &operator=(const Cmodel &);
std::vector<itensor::ITensor> prime(void);

private:
static itensor::Real factorial(int);
static std::vector<itensor::ITensor> idmps(void);
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